RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity
نویسندگان
چکیده
For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original "in vitro model of persistence" consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen.
منابع مشابه
RegA, the regulator of the two-component system RegB/RegA of Brucella suis, is a controller of both oxidative respiration and denitrification required for chronic infection in mice.
Adaptation to oxygen deficiency is essential for virulence and persistence of Brucella inside the host. The flexibility of this bacterium with respect to oxygen depletion is remarkable, since Brucella suis can use an oxygen-dependent transcriptional regulator of the FnrN family, two high-oxygen-affinity terminal oxidases, and a complete denitrification pathway to resist various conditions of ox...
متن کاملPrevalence of proline racemase/ hydroxyproline epimerase gene in human brucella isolates in Iran
Background: Human brucellosis is a zoonotic disease caused by Brucella melitensis, Brucella abortus, and Brucella suis. Brucella causes a chronic disease, which subverts the immune defense system of their hosts. In this study, the prevalence of an important Brucella virulence determinant, PrpA, which can modulate immune response, was determined in human isolates. Methods: Polymerase chain reac...
متن کاملThe Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models
Citation: Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M and Moriyón I (2018) The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Front. Microbiol. 9:641. doi:...
متن کاملIdentification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions
Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...
متن کاملCritical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line
In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017